

Simulation study of propagation losses due to sidewall roughness of GaAs waveguides for single-photon sources in quantum applications

Miloš Ljubotina¹, Jasper De Witte², Dries Van Thourhout², Bart Kuyken², Leonardo Midolo³, Marko Topič¹, Janez Krč¹

¹University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia ²Photonics Research Group, Ghent University - IMEC, Technologiepark-Zwijnaarde 126, 9052 Ghent, Belgium ³Center for Hybrid Quantum Networks, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark

Motivation

Quantum photonic integrated circuits impose stringent requirements on integrated components (e.g., singlephoton sources and detectors, modulators, low-loss

WG Propagation Loss simulation results

- couplers, and waveguides).
- In this contribution, we utilise numerical simulations to analyse the effects of sidewall roughness of GaAs waveguides (WGs) in single-photon sources on (i) WG propagation losses and (ii) coupling efficiency to a low-loss SiN-based interposer.

The sidewall roughness of GaAs-based WGs stems from the fabrication process. In our case, we mainly attribute the roughness to e-beam processing of the photoresist. Illustrations of a suspended GaAs WG and an air-cladded SiN-GaAs coupling section with exaggerated roughness are shown above in the left and right image, respectively.

Methods

- We analyse optical losses due to sidewall roughness of GaAs WGs and couplers for a 930 nm wavelength by employing 3-D FDTD numerical simulations.

- An increase in roughness RMS value (σ_{rms}) or a decrease in correlation length (L_{corr}) leads to a substantial increase in propagation losses (left and right fig.).
- A first experimental estimate of $\sigma_{\rm rms}$ (~3 nm) and propagation loss (50-70) dB/cm) corresponds to correlation lengths in the range of 260-300 nm in simulations (right fig.).

A pseudo random number generator (PRNG) is used to generate roughness profiles with gaussian а autocorrelation envelope.

Employing a longer wavelength (1300 nm) and correspondingly wider WG (450 nm), such that it still remains single-mode, has a significant impact on performance, resulting in lower losses for shorter correlation lengths (left fig.). • Wider WGs exhibit lower losses than narrower WGs, however, simulation results indicate an increase in losses towards the largest WG width considered (right fig.).

GaAs-SiN Coupling Loss simulation results Top view of GaAs taper: ssion (dB) 5 µm 35 µm 0.0 -200 nm 115 nm 60 nm -0.5

Conclusions

- In rough GaAs WGs with $\sigma_{\rm rms}$ of a few nm and L_{corr} below a few hundred nm very high losses (above 100 dB/cm) are predicted.
- WG wider and longer operating wavelength can result in substantially lower

• Fundamental mode transmission of an adiabatic SiN-GaAs coupler drops from nearly 0 dB to around -1.2 dB in case of no micro-transfer-printing-induced misalignment, considering a $\sigma_{\rm rms}$ of 3 nm and L_{corr} of 350 nm.

loss in case of short correlation lengths.

GaAs WG sidewall roughness can cause significant degradation of the performance of an adiabatic SiN-GaAs coupler.

Acknowledgement

European Union's Horizon 2020 research and innovation programme, QuantERA II Programme, GA No. 101017733, project μTP4Q U ANTERA

- National funding (MIZS) contract No. agency C3330-22-252001
- Slovenian Research Agency (Research Programme P2-0415, and M.L. for PhD funding)

Fonds Wetenschappelijk Onderzoek (FWO) grant 1S69123N

24th European Conference on Integrated Optics, 19 - 21 April 2023, University of Twente, Netherlands

milos.ljubotina@fe.uni-lj.si