

Heterogenous Photonic Integration for Quantum Optical Communication

Janez Krc¹, Andraz Debevc¹, Milos Ljubotina¹, Marko Topic¹, Isaac Luntadila Lufungula², Jasper De Witte², Leonardo Midolo³, Claus Pedersen⁴, Amir Hossein Ghadimi⁵, Hamed Sattari⁵, Michel Despont⁵, Simone Ferrari⁶, Wolfram Pernice⁶ and Dries Van Thourhout²

¹University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
 ²Photonics Research Group, Ghent University - IMEC, Belgium
 ³Niels Bohr Institute, University of Copenhagen, Denmark
 ⁴Sparrow Quantum ApS,, Denmark
 ⁵Swiss Center for Electronics and Microtechnology (CSEM), Switzerland
 ⁶Heidelberg University - Kirchhoff-Institute for Physics, Germany

QUANTERA

uTP4Q

Outline

Introduction

- photonic integrated circuits PICs
- quantum PICs QPICs

Quantera project uTP4Q

- towards quantum PIC (for optical communication)
- heterogeneous photonic integration micro-transfer printing
- selected results

Conclusion

Integration of components

Integrating electronics into electronic integrated circuits - ICs

Integrating photonics into photonic integrated circuits - PICs

- small, can be co-integrated with IC
- high functionality on small area
- one package required
- > uniformity, reliability

Electronic integrated circuit - IC Photonic Integrated Circuit - PIC

- electrons -

- photons -

- passive and active components
- different technologies (see further)
- in case of silicon technology
 CMOS process
- low losses at high freq., fast signal processing

PIC material platforms

- III-V semiconductors: InP, GaAs
- Silicon-based: Si, Si₃N₄, + Ge use advantages of CMOS processing
- Lithium Niobate: LiNbO
- > polymers
- others

Transparency windows for low loss waveguiding for different platforms

Basic components in Si PICS

Active

Integrated lasers – heterogeneous integration of III-V

W. Shi et al.: Scaling capacity of fiber-optic transmission systems, Nanophotonics 2020; 9(16): 4629-4663

J. Krc et al.

Quantum technologies & photonic integration

Quantum technologies

Qubit Technologies

Trapped Ions

Credit: S. Debnath, E. Edwards / JQI Monroe Group, University of Maryland/JQI

Image from Centre for Quantum Computation & Communication Technology, credit Matthew Broome

IBM Quantum / © 2022 IBM Corporation | Heike Riel | hei@zurich.ibm.com

Neutral Atoms

Image: Cheng Group, Chicago

Spins or Quantum Dots

Solid-State Defects

NV Centers in diamond, Phosphorous in Si²⁸, dimers in SiC, etc.

Image from Hanson Group, Delft

Superconducting Circuits

Courtesy of Dr. Heike Riel, IBM, SPIE 2022 conference

J. Krc et al.

2022-2030 quantum technologies market forecast

(Source: Quantum Technologies 2023, Yole Intelligence, February 2023)

© Yole Intelligence 2023

J. Krc et al.

Quantum optical communication

Secure communication between "Alice and Bob" – quantum key distribution

Using single photons for key distribution in optical communication

If a photon is detected by an eavesdropper it gets lost or by re-generation it changes its property

Quantum photonic integrated circuits - QPICs

QPICs

QPICs for quantum:

- ➤ computing
- communications
- simulations
- ➤ sensing

Figure 1: Quantum photonic integrated circuit, including non-linear optics (spirals) and quantum light sources (red dots) in nano-beam cavities, quantum memories (rings including ions), and superconducting detectors (strips), as well as active and passive photonic elements (taken from Nat Rev Phys (2021): <u>https://doi.org/10.1038/s42254-021-00398-z</u>)

Source: QPIC position paper 2022

uTP4Q project

uTP4Q

E QUANTERA

A versatile quantum photonic IC platform through micro-transfer printing

Partner Number	Country	Institution/ Department			
1 Coordinator	BE	Ghent University (UG)			
2	DK	University of Copenhagen (NBI)			
3	DK	Sparrow Quantum (SQ)			
4	DE	University of Muenster (MU)			
5	СН	Swiss centre for electronics and			
		microtechnology (CSEM)			
6	SLO	Univerza v Ljubljani (UL)			

UNIVERSITEIT GENT

Call: QuantERA II JTC 2021 FONDS NATIONAL SUISSE Schweizzerscher Nationalfonds Fondomazionale Sviezero fwo REPUBLIC OF SLOVENIA Innovation Fund Denmark GOV.SI Call topic Applied Quantum Science Start date May 2022 Duration 36 months

€ Funding support € 1 547 570

J. Krc et al.

uTP4Q A versatile quantum photonic IC platform through micro-transfer printing

An advantageous way of heterogeneous integration – QUANTERA combining components from different platforms on wafer scale Source wafer C: **SNSPD**-detectors Single-photon detectors **PIC** for quantum communication Modulators/ **Switches** Source wafer B: LN-modulators Fully integrated Quantum PIC with Single-photon QD-sources, detectors, modulators... sources Source wafer A **QD**-sources Target wafer: Low-loss SiN connections and passive components

J. Krc et al.

QUANTERA uTP4Q

A versatile quantum photonic IC platform through micro-transfer printing

Device Independent Quantum Key Distribution - DIQKD

Discrete realization:

QUANTERA UTP4Q A versatile quantum photonic IC platform through micro-transfer printing

Single photon sources - InAs quantum dots

J. Krc et al.

FOAN 2023, Oct. 30 - 31. 2023, Ghent, Belgium

21

Sparrow

Quantum

QUANTERA UTP4Q A versatile quantum photonic IC platform through micro-transfer printing

LiNbO modulators, switches

FOAN 2023, Oct. 30 – 31. 2023, Ghent, Belgium

....

QUANTERA uTP4Q

A versatile quantum photonic IC platform through micro-transfer printing

Single photon detectors - NbN superconducting nanowires

S. Ferrari et al., Nanophotonics 2018; 7(11): 1725-1758

J. Krc et al.

FOAN 2023, Oct. 30 - 31. 2023, Ghent, Belgium

MÜNSTER

SiN chip for micro-transfer printing of single-photon superconducting nanowire detector

A versatile quantum photonic IC platform through micro-transfer printing

Silicon nitride (SiN)

SiN platform offers low losses

			\frown					
	Wavelength Range (nm)	Refractive Index (at 1550nm)	Waveguide Loss (dB/cm)	Non-linear Process	Thermo-optic Coefficient (K ⁻¹)	Doping based Modulators (Gb/s)	Integrated Photodetector (GHz)	Layer Stack Flexibility
Silicon	1100 – 4000	3.48	1 – 1.5	Low	1.86 × 10⁻⁴	>40	>60	Limited
Silicon Nitride	400 – 4000	2.0	0.001 – 0.5	High	2.45 × 10⁻⁵	Not available	Not available	Excellent

Silicon versus Silicon Nitride

Si₃N₄

Silicon nitride: n=2 Silicon oxide: n=1.45 Moderately high index contrast

Abdul Rahim (2017), Expanding the Silicon Photonics Portfolio With Silicon Nitride Photonic Integrated Circuits

Silicon & Silicon Nitride both offers excellent platform for different requirements

EUROPRACTICE Webinar Series on imec's MPW Services Webinar I, BioPIX – imec's Silicon Nitride Photonics Platform 26 January 2022 - 18

imec's MPW Services ride Photonics Platform 18 ່ເກາຍດ

Europractice & imec webinar on SiN MPW, 2022

SiN test chip $\lambda = 930 \text{ nm}$ fabricated at **Ghent Uni.**

6.3 mm

M. Davanco et al., Nat Commun, vol. 8, no. 1, Art. no. 1, Oct. 2017.

University of Ljubljana

Optimization of GaAs coupler considering realistic situation

uTP4Q

uTP4Q

Coupler optimization – simulation results (FDTD, EME)

Optimisation for **robust** coupling considering **tolerances in widths and BCB thicknesses**

J. Krc et al.

uTP4Q

Conclusion

- Integrated photonic is important for quantum communication and other quantum applications
- Micro-transfer printing enables heterogeneous integration of high-performance quantum components on wafer scale
- Both is combined in the project uTP4Q aiming to establish a versatile platform for quantum photonic ICs, such as integrated DIQKD solutions
- Successful demonstration of printed devices (single-photon sources, modulators, single-photon detectors) on low-loss SiN platform was presented and also some results of optimization of GaAs couplers.

Acknowledgement

QuantERA II programme (GA No: Grant Agreement No 101017733)

uTP4Q

Slovene contract No: C3330-22-252001

Research Programme Photovoltaics and Electronics (P2-0415)

.

2021-2027 silicon photonic die forecast by application

(Source: Silicon Photonics 2022, Yole Intelligence, July 2022)

© Yole Développement, 2022

J. Krc et al.

Integrating silicon photonics

Mario Paniccia, Intel fellow and director of Intel's Photonics Technology Lab, talks to *Nature Photonics* about the company's progress in commercializing high-speed silicon photonics.

The latest breakthrough from Intel: an integrated link consisting of a fully integrated silicon photonic transmitter chip with hybrid silicon lasers (left) and a fully integrated receiver chip based on germanium photodetectors (right).

Figure 5: Quantum photonic integrated circuit with thermo-optic phase shifters (bottom) allows for simulating the vibrational quantum dynamics of molecules (taken from Nature (2018): https://doi.org/10.1038/s41586-018-0152-9)

Fig. 4: Optical micrograph of an assembled ion trap device with an eightchannel fibre array attached. b, Higher-magnification view near the trap zones (taken from Nature (2020) <u>https://doi.org/10.1038/s41586-020-</u> 2823-6)

Source: QPIC position paper 2022

Quantum computing

Courtesy of Dr. Heike Riel, IBM, SPIE 2022 conference

SiN integrated structures – University of Ljubljana (PECVD, litho, plasma etching)

Date :12 Aug 202

4" wafer

J. Krc et al.

stry, Ljubljana

Operator: Kapun G

FOAN 2023, Oct. 30 - 31. 2023, Ghent, Belgium

Date :23 Dec 202

Quantum communication

Communication between "Alice and Bob"

A versatile quantum photonic IC platform through micro-transfer printing

Micro-transfer printing basics

Device processing, release, pick-up & print

GHENT UNIVERSITY

uTP4Q